Arunachalam A. et al. / Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry. 1(4), 2013, 184 - 195.

Review Article

ISSN: 2321-0923

STABILITY STUDIES: A REVIEW

A. Arunachalam^{*1}, M. Shankar²

^{*1}Department of Pharmaceutics, Asmara College of Health Sciences, School of Pharmacy, Asmara, Eritrea, Africa. ²Department of Pharmaceutical Chemistry, Seven Hills College of Pharmacy, Tirupati, A P, 517562, India.

ABSTRACT

The stability studies is one of the very important parameters of pharmaceutical products. Stability assessment and shelf-life prediction is usually a major focus of a pharmaceutical scientist's attention in the development of all dosage forms. It is important in the development of small molecule drug products as well, particularly given the importance of the physical state of the drug in determining stability characteristics. Stability testing is utilized for formulated product to prediction of shelf life, determine proper storage conditions and suggest labeling instructions.

KEYWORDS

Stability Studies, Shelf Life, Expirary Date, Storage Conditions, CPMP Guidelines and ICH Guidelines.

Author for correspondence:

A. Arunachalam, Department of Pharmaceutics, University of Asmara, Asmara College of Health Sciences, School of Pharmacy, Asmara, Eritrea, Africa.

Email: harisarun1985@gmail.com.

Available online: www.uptodateresearchpublication.com

INTRODUCTION

Stability testing of pharmaceutical products is a complex set of procedures involving considerable cost, time consumption and scientific expertise in order to build in quality, efficacy and safety in a drug formulation. Scientific and commercial success of a pharmaceutical product can only be ensured with the understanding of the drug development process and the myriad tasks and milestones that are vital to a comprehensive development plan. The most important steps during the developmental stages include pharmaceutical analysis and stability studies that are required to determine and assure the identity, potency and

purity of ingredients, as well as those of the formulated products¹. Stability of a pharmaceutical product may be defined as the capability of a particular formulation in а specific container/closure system to remain within its physical, chemical, microbiological, toxicological, protective and informational specifications². In other words, it is the extent to which a product retains, within the specified limits, throughout its period of storage and use, the same properties and characteristics possessed at the time of its packaging. Stability testing thus evaluates the effect of environmental factors on the quality of the a drug substance or a formulated product which is utilized for prediction of its shelf life, determine proper storage conditions and suggest labeling instructions. Moreover, the data generated during the stability testing is an important requirement for regulatory approval of any drug or formulation³.

Stability testing is termed as a complex process because of involvement of a variety of factors influencing the stability of a pharmaceutical product. These factors include stability of the active ingredient(s); interaction between active ingredients and excipients, manufacturing process followed, type of dosage form, container/closure system used for packaging and light, heat and moisture conditions encountered during shipment, storage and handling. In addition, degradation reactions like oxidation, reduction, hydrolysis or racemization, which can play vital role in stability of a pharmaceutical product, also depend on such conditions like concentration of reactants, pH. radiation, catalysts etc., as well as the raw materials used and the length of time between manufacture and usage of the product. A pharmaceutical product may undergo change in appearance, consistency, content uniformity, clarity (solution), moisture contents, particle size and shape, pH, package integrity thereby affecting its stability. Such physical changes may be because of impact, vibration, abrasion and temperature fluctuations such as freezing, thawing or shearing etc. The chemical reactions like solvolysis, oxidation, reduction, racemization etc. That occur in the

pharmaceutical products may lead to the formation of degradation product, loss of potency of active pharmaceutical ingredient (API), loss of excipient activity like antimicrobial preservative action and antioxidants etc.⁴. Stability of a pharmaceutical product can also be affected because of growth microbiological of changes like microorganisms in non sterile products and changes in preservative efficacy⁵. Potential adverse effects of instability in pharmaceutical products have been given in Table No.1.

IMPORTANCE OF STABILITY TESTING

The primary reason for stability testing is the concern for the well-being of the patient suffering from the disease for which the products is designed. Apart from degradation of the unstable product into toxic decomposition products, loss of activity up to a level of 85% of that claimed on the label may lead to failure of the therapy resulting in death e.g. nitroglycerine tablets for angina and cardiac arrest. Because of this concern, it has become a legal requirement to provide data for certain types of stability tests for the regulatory agencies before approval of a new product. Second important concern is to protect the reputation of the manufacturer by assuring that the product will retain fitness for use with respect to all functionally relevant attributes for as long as they are on the market. Other benefits of stability studies at the developmental stage or of the marketed products are to provide a database that may be of value in selection of adequate formulations, excipients and container closure systems for development of a new product, to determine shelf life and storage conditions for development of a new product, preparation of registration dossier, to substantiate the claimed shelf life for the registration dossier and to verify that no changes have been introduced in the formulation or manufacturing process that can adversely affect the stability of the product $^{1-4}$.

STABILITY TESTING METHODS

Stability testing is a routine procedure performed on drug substances and products and is employed at

Available online: www.uptodateresearchpublication.com

various stages of the product development. In early stages, accelerated stability testing (at relatively high temperatures and/or humidity) is used in order to determine the type of degradation products which may be found after long-term storage. Testing under less rigorous conditions i.e. those recommended for long-term shelf storage, at slightly elevated temperatures is used to determine a product's shelf life and expiration dates. The major aim of pharmaceutical stability testing is to provide reasonable assurance that the products will remain at an acceptable level of fitness/quality throughout the period during which they are in market place available for supply to the patients and will be fit for their consumption until the patient uses the last unit of the product². Depending upon the aim and steps followed, stability testing procedures have been categorized into the following four types.

Real-Time stability testing

Real-time stability testing is normally performed for longer duration of the test period in order to allow significant product degradation under recommended storage conditions. The period of the test depends upon the stability of the product which should be long enough to indicate clearly that no measurable degradation occurs and must permit one to distinguish degradation from inter-assay variation. During the testing, data is collected at an appropriate frequency such that a trend analysis is able to distinguish instability from day-to-day ambiguity. The reliability of data interpretation can be increased by including a single batch of reference material for which stability characteristics have already been established. Stability of the reference material also includes the stability of reagents as well as consistency of the performance of the instrument to be used throughout the period of stability testing. However, system performance and control for drift and discontinuity resulting from changes in both reagents and instrumentation must be monitored⁶.

Accelerated stability testing

In accelerated stability testing, a product is stressed at several high (warmer than ambient) temperatures and the amount of heat input required to cause

Available online: www.uptodateresearchpublication.com

product failure is determined. This is done to subject the product to a condition that accelerates degradation. This information is then projected to predict shelf life or used to compare the relative stability of alternative formulations. This usually provides an early indication of the product shelf life and thus shortening the development schedule. In addition to temperature, stress conditions applied during accelerated stability testing are moisture, light, agitation, gravity, pH and package². In accelerated stability testing the samples are subjected to stress, refrigerated after stressing, and then assayed simultaneously. Because the duration of the analysis is short, the likelihood of instability the measurement system is reduced in in comparison to the real-time stability testing. Further, in accelerated stability testing, comparison of the unstressed product with stressed material is made within the same assay and the stressed sample recovery is expressed as percent of unstressed sample recovery. For statistical reasons, the treatment in accelerated stability projections is recommended to be conducted at four different stress temperatures. However, for thermolabile and proteinaceous components, relatively accurate stability projections are obtained when denaturing stress temperatures are avoided⁶.

The concept of accelerated stability testing is based upon the Arrhenius equation (1) and modified Arrhenius equation^{6,7} (2):

$$k = Ae^{-E_a/RT}$$

Where,

k=specific rate constant
A=frequency factor
Ea= activation energy
R=ideal gas constant
T=absolute temperature.
These equations describe the relationship between storage temperatures and degradation rate. Using

storage temperatures and degradation rate. Using Arrhenius equation, projection of stability from the degradation rates observed at high temperatures for some degradation processes can be determined. When the activation energy is known, the degradation rate at low temperatures may be projected from those observed at "stress"

October - December

186

temperatures^{7, 8, 9}. The stress tests used in the current International Conference on Harmonization (ICH) guideline (e.g., 40% for products to be stored at controlled room temperature) were developed from a model that assumes energy of activation of about 83 kJ per mole⁶.

common practice of А manufacturers in pharmaceutical industries was to utilize various shortcuts such as Q rule and bracket tables for prediction of shelf life of the products but these methods are not official either in ICH or FDA. The O rule states that a product degradation rate decreases by a constant factor Q10 when the storage temperature is decreased by 10°C. The value of Q10 is typically set at 2, 3 or 4 because these correspond to reasonable activation energies. This model falsely assumes that the value of Q does not vary with temperature. The bracket table technique assumes that, for a given analyte, the activation energy is between two limits (e.g., between 10 and 20 kcal). As a result, a table may be constructed showing days of stress at various stress temperatures. The use of a 10 to 20 kcal bracket table is reasonable because broad experience indicates that most analytes and reagents of interest in pharmaceutical and clinical laboratories have activation energies in this range^{2, 6}.

Retained sample stability testing

This is a usual practice for every marketed product for which stability data are required. In this study, stability samples, for retained storage for at least one batch a year are selected. If the number of batches marketed exceeds 50, stability samples from two batches are recommended to be taken. At the time of first introduction of the product in the market, the stability samples of every batch may be taken, which may be decreased to only 2% to 5% of marketed batches at a later stage. In this study, the stability samples are tested at predetermined intervals i.e. if a product has shelf life of 5 years, it is conventional to test samples at 3, 6, 9, 12, 18, 24, 36, 48, and 60 months. This conventional method of obtaining stability data on retained storage samples is known as constant interval method^{2, 10}. Stability testing by evaluation of market samples is a

Available online: www.uptodateresearchpublication.com

modified method which involves taking samples already in the market place and evaluating stability attributes. This type of testing is inherently more realistic since it challenges the product not just in the idealized retained sample storage conditions, but also in the actual marketplace².

Cyclic temperature stress testing

This is not a routine testing method for marketed products. In this method, cyclic temperature stress tests are designed on knowledge of the product so as to mimic likely conditions in market place storage. The period of cycle mostly considered is 24 hours since the diurnal rhythm on earth is 24 hour, which the marketed pharmaceuticals are most likely to experience during storage. The minimum and maximum temperatures for the cyclic stress testing is recommended to be selected on a product-byproduct basis and considering factors like recommended storage temperatures for the product and specific chemical and physical degradation properties of the products. It is also recommended that the test should normally have 20 cycles^{2, 4}.

GUIDELINES FOR STABILITY TESTING

To assure that optimally stable molecules and products are manufactured, distributed and given to the patients, the regulatory authorities in several countries have made provisions in the drug regulations for the submission of stability data by the manufacturers. Its basic purpose was to bring in uniformity in testing from manufacturer to manufacturer. These guidelines include basic issues related to stability, the stability data requirements for application dossier and the steps for their execution. Such guidelines were initially issued in 1980s. These were later harmonized (made uniform) in the International Conference on Harmonization (ICH) in order to overcome the bottleneck to market and register the products in other countries. The ICH was a consortium formed with inputs from both regulatory and industry from European commission, Japan and USA. The World Health Organization (WHO), in 1996, modified the guidelines because the ICH guidelines did not address the extreme climatic conditions found in

many countries and it only covered new drug substances and products and not the already established products that were in circulation in the WHO umbrella countries. In June 1997, US FDA also issued a guidance document entitled 'Expiration dating of solid oral dosage form containing Iron. WHO, in 2004, also released guidelines for stability studies in global environment¹¹. ICH guidelines were also extended later for veterinary products. A technical monograph on stability testing of drug substances and products existing in India has also been released by India Drug Manufacturers Association¹, ³. Further, different test condition and requirements have been given in the guidance documents for active pharmaceutical ingredients, drug products or formulations and excipients. The codes and titles covered under ICH guidance have been outlined in the Table No.2.

Series of guidelines related to stability testing have also been issued by the Committee for Proprietary Medicinal Products (CPMP) under the European Agency for the Evaluation of Medicinal Products (EMEA) to assist those seeking marketing authorization for medicinal products in European Union. These are listed in Table No.3.

CLIMATIC ZONES FOR STABILITY TESTING

For the purpose of stability testing, the whole world has been divided into four zones (I- IV) depending upon environmental conditions the the pharmaceutical products are likely to be subjected to during their storage. These conditions have been deriv ed on the basis of the mean annual temperature and relative humidity data in these regions. Based upon this data, long-term or realtime stability testing conditions and accelerated stability testing conditions have been derived. The standard climatic zones for use in pharmaceutical product stability studies have been presented in the Table No.4. The break-up of the environmental conditions in each zone and also the derived longterm stability test storage conditions, as given by WHO have also been presented.

The stability conditions have also been harmonized and adjusted to make them more practical for industry application and rugged for generalized application $^{1, 3, 13}$.

PROTOCOL FOR STABILITY TESTING

The protocol for stability testing is a pre-requisite for starting stability testing and is necessarily a document that describes written the kev components of a regulated and well controlled stability study. Because the testing condition is based on inherent stability of the compound, the type of dosage form and the proposed containerclosure system, the protocol depends on the type of drug substance or the product. In addition, the protocol can depend on whether the drug is new or is already in the market^{15,16}. The protocol should also reflect the regions where the product is proposed to be marketed e.g. if the product is planned to be used in climatic zones I-III, IVa and IVb, the stability program must include all these zones¹⁶. A well designed stability protocol should contain the following information.

Batches

Stability studies at developmental stages are generally carried out on a single batch while studies intended for registration of new product or unstable established product are done on first three production batches, while for stable and wellestablished batches, even two are allowed. If the initial data is not on a full-scale production batch, first three batches of drug product manufactured post-approval should be placed on long-term studies using the same protocol as in approved drug application. Data on laboratory scale batches obtained during development of pharmaceuticals are not accepted as primary stability data but constitute supportive information. In general, the selection of batches should constitute a random sample from the population of pilot or production batches^{1, 3}.

Containers and closures

The testing is done on the product in immediate containers and closures proposed for marketing. The packaging materials include aluminium strip

Available online: www.uptodateresearchpublication.com

packs, blister packs, Alu-Alu packs, HDPE bottles etc. This may also include secondary packs, but not shippers. Products in all different types of containers/closures, whether meant for distribution or for physician and promotional samples, are to be tested separately. However, for bulk containers, testing in prototype containers is allowed, if it simulates the actual packaging^{1, 3}.

Orientation of storage of containers

Samples of the solutions, dispersed systems and semi solid drug products for stability studies must be kept upright and positioned either inverted or on the side to allow for full interaction of the product with the container-closure. This orientation helps to determine whether the contact between the drug product or solvent and the closure results in the extraction of chemical substances from the closure components or adsorption of product components in to the container-closure¹⁵.

Sampling time points

Frequency of testing should be such that it is sufficient to establish the stability profile of the new drug substance. For products with a proposed shelf life of at least 12 months, the testing frequency at the long-term storage condition should be every 3 months over the first year, every 6 months over the second year and annually thereafter throughout the proposed shelf life expiration date. In the case of accelerated storage conditions, a minimum of three time points, including the initial and end points, for example, 0, 3, and 6 months is recommended. When testing at the intermediate storage condition is necessary as a result of significant change at the accelerated storage condition, a minimum of four test points, including the initial and final time points, is recommended, for example, 0, 6, 9 and 12 months¹⁶. The test schedule for stability testing of a new product has been presented in Table No.5.

In case the same product of different strengths, multiple sizes, etc is required to be tested, reduced stability testing plans can be worked out, which involves less number of test points. The reduced testing plans are based on bracketing and matrixing statistical designs. Bracketing is the design of a stability schedule such that only samples on the extremes of certain design factors, e.g., strength, package size, are tested at all time points as in a full design. On the other hand, matrixing involves testing of a subset of the total number of possible samples for all combinations at a specific time point. Subsequently, another subset of samples for all factor combinations is tested. The factors that can be matrixed include batches, strengths with identical formulation, container sizes, fill sizes, and intermediate time points^{1, 3, 16}.

Sampling Plan

Sampling plan for stability testing involves, planning for the number of samples to be charged to the stability chambers and sampling out of the charged batch so as to cover the entire study. The first step should be the development of the sampling time points followed by the number of samples needed to be drawn at each pull point for complete evaluation of all test parameters and finally adding up to get the total number of samples. For example there would be a requirement of about 100 tablets per pull out in a long term or accelerated stability studies including 10 each for assay, hardness and moisture determination, 6 each for dissolution and disintegration and 50 for friability. This multiplied by the total number of pull outs will give the total number of tablets required for a study. This is followed by the development of a sampling plan, which includes the selection of the containers representing the batch as a whole but in an unbiased manner. A stratification plan has been suggested whereby from a random starting point every n^{th} container is taken from the filling or packaging line (n is chosen such that the sample is spread over the whole batch) 1,3 .

TEST STORAGE CONDITIONS

The storage conditions to be selected are based upon the climatic zone in which the product is intended to be marketed or for which the product is proposed to be filed for regulatory approval. General recommendations on the storage conditions have been given by ICH, CPMP and WHO. The abridged/indicative ICH and WHO storage

Available online: www.uptodateresearchpublication.com

conditions for drug products have been given in Table No.6.

STABILITY INDICATING QUALITY PARAMETERS

Stability studies should include testing of those attributes of the FPP that are susceptible to change during storage and are likely to influence quality, purity, potency, identity and safety or efficacy which could be expected to change upon storage are chosen as stability tests. Therefore appearance, degradation products, microbiological assay. testing, dissolution, and moisture are standard tests performed on stability test samples. Microbiological tests include sterility, preservative efficacy and microbial count as applicable e.g. for liquid injectable preparations. The batches used for stability study must meet all the testing requirements including heavy metals, residue on ignition, residual solvents etc. Some of these are required at the time of product release but not required to be repeated during stability testing 16 . Other tests like enantiomeric purity, particle size and polymorphic form etc have also been discussed in ICH guidance Q6A.

EXPIRATION DATE/SHELF LIFE

An expiration date is defined as the time up to which the product will remain stable when stored under recommended storage conditions. Thus, an expiration date is the date beyond which it is predicted that the product may no longer retain fitness for use. If the product is not stored in accordance with the manufacturer's instructions, then the product may be expected to degrade more rapidly. Shelf life is the time during which the product, if stored appropriately as per the manufacturer's instructions, will retain fitness for use (>90% of label claim of potency). The expiration date is also defined as the date placed on the container/labels of a drug product designating the time during which a batch of the product is expected to remain within the approved shelf life specifications, if stored under defined conditions and after which it should not be $used^2$.

Estimation of Shelf Life

The shelf life is determined from the data obtained from the long term storage studies. The data is first linearized and test for goodness of fit is applied. The linearized data is then analyzed to see that the slope and the intercepts are matching. Table No.7 gives the different possibilities in the pattern of the concentration-time data of the three batches. The data is pooled accordingly and used for estimation of the common slope^{1, 3, 17}.

For determination of significance of difference in case of slope or intercept, statistical tests like t test should be applied. The data is available in the form of only five data points i.e. 0, 3, 6, 9 and 12 months, either pooled from the three batches or from the three individual batches if they are not fit for pooling. In case data is not fit for pooling, stability estimates are to be made on the worst batch. The shelf life/expiry date is determined from the regression line of this five point data based on calculation of 95% one-sided confidence limit. For reading the expiry date, 90% drug concentration is considered as the lowest specification limit and the point where the extension line cuts the 95% confidence limit line is taken as an expiry date. Because shelf life derived from the intersection of the lower 90% confidence bound and 90% potency value has a 95% confidence level, therefore there is only a 5% chance that our estimate of the shelf life will be too high¹⁶. For new drugs, it is a general practice to grant only two year expiry initially, which is based on satisfactory one year long-term and 6 months accelerated stability data. The expiry date for third and later years is allowed only on production of real-time data for the subsequent years^{1, 3}. Most pharmaceutical products are characterized by only one shelf life. However, in some cases a product may have two e.g. a freezedried (lyophilized) protein product may have only 1 shelf life, say 2 years, for the product stored in the dry condition and a 2nd shelf life, say 2 days, for the product when it has been reconstituted with the appropriate vehicle and is ready for injection⁴.

Available online: www.uptodateresearchpublication.com

CURRENT TRENDS IN STABILITY TESTING

Current trend, especially amongst the multinational pharmaceutical companies, is to define conditions for stability testing for global marketing. For this the companies are orienting their protocols to single set of conditions that covers extreme environmental conditions. The specific changes for global testing include increase in duration of accelerated testing period from 6 to 12 months, and conduct of additional tests at 50°C/75% RH for 3months¹⁸. The concept behind this change is to avoid repetition of stability testing for other regions and efficient and optimum use of resources as all tests are done in one laboratory. Moreover testing under combination of three environmental factors, viz., temperature, humidity and light, has been reported to result in stronger deleterious effect on drug substances and products, than under temperature and humidity conditions only^{1, 3, 19, 20}.

Potential Adverse Effect	Explanation/ Reason	Example	Stability Parameter Tested	
Loss of Active Ingredient	Degradation of API in product resulting in less than 90% drug as claimed on label - unacceptable quality	Nit rogl ycer ine tablets	Time elapsed before the drug content no longer exceeds 90%	
Increase in concentration of active Ingredient	Loss of vehicle perfusion bags sometimes allow solvent to escape and evaporate so that the product within the bag shows an increase in concentration.	Lidocaine gel, products in perfusion bags	Stability in final container	
Alteration in bioavailability	Changes in rate and extent of absorption on storage		Dissolution/release studies	
Loss of content uniformity	Loss of contents as a function of time	Suspension	Ease of re- dispersion or sedimentation volume	
Decline of microbiological status	Increase in number of viable microorganisms already present in the product. Contamination because of compromised package integrity during distribution/ storage	Multiuse cream	Total bioburden after storage	
Loss of pharmaceutical elegance and patient acceptability	Speckling caused by the interaction of the drug containing amine group with a minor component in the lactose resulting in the formation of a chromatophore	Slight yellow or brown speckling on the surface of tablet containing spray-dried lactose	Visual Examination	
Formation of toxic degradation products	Degradation of the drug component	Formation of epianhydrotetracycline from tetracycline, Protein drugs	Amount of degradation products during shelf life	
Loss of package integrity	Change in package integrity during storage or distribution	Plastic screw cap losing back-off-torque	Specific package integrity tests	
Reduction of label quality	Deterioration of label with time and cause the ink to run and thus adversely affect legibility	Plasticizer from plastic bottle migrates into the label	Visual examination of the label	
Modification of any factor of functional relevance	Time-dependent change of any functionally relevant attribute of a drug product that adversely affects safety, efficacy, or patient acceptability or ease of use	Adhesion ageing of transdermal patches	Moni tori ng changes	

Available online: www.uptodateresearchpublication.com October - December

Arunachalam A. et al. / Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry. 1(4), 2013, 184 - 195.

ICH Code	Guideline title		
Q1A	Stability testing of New Drug Substances and Products (Second		
	Revision)		
Q1B	Stability testing : Photostability testing of New Drug Substances and Products		
Q1C	Stability testing of New Dosage Forms		
Q1D	Bracketing and Matrixing Designs for stability testing of Drug Substances and Products		
Q1E	Evaluation of stability data		
Q1F	Stability data package for Registration Applications in Climatic Zones III and IV		
QSC	Stability testing of Biotechnological/Biological Products		

 Table No.2: Codes and Titles Used in ICH Guidelines^{1,3}

 Table No.3: CPMP Guidelines for Stability^{1,3,12}

CPMP code	Guideline title
CPMP/QWP/	Guideline on Stability Testing for Applications for Variations
576/96 Rev. 1	to a Marketing Authorization
CPMP/QWP/	Guideline on Stability Testing for Active Substances and
6142/03	Medicinal Products Manufactured in Climatic Zones III and
	IV to be marketed in the EU
CPMP/QWP/	Note for guidance on Declaration of Storage Conditions for
609/96 Rev. 1	Medicinal Products Particulars and Active Substances
CPMP/QWP/	Note for Guidance on Stability Testing of Existing Active
122/02 Rev. 1	Substances and Related Finished Products
CPMP/QWP/	Note for Guidance on Start of Shelf Life of the Finished
072/96	Dosage Form
CPMP/QWP/	Note for Guidance for In-Use Stability Testing of Human
293 4/99	Medicinal Products
CPMP/QWP/	Note for Guidance on Stability Testing for a Type 2 variation
576/96	to a Marketing Authorization
CPMP/QWP/	Note for Guidance on Maximum Shelf-Life for Sterile
159/96	Products after First Opening or Following Reconstitution

Arunachalam A. et al. / Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry. 1(4), 2013, 184 - 195.

	Countries /Region	annual partial water vapour pressure	testing conditions
Temperate	United Kingdom Northern Europe Russia United states	≤15°C/≤11hPa	21°C45%RF
Subtropical and Mediterranean	Japan Southern	>15-22°C />11-18 hPa	25°C/60%RH
	Europe		30°C/35%RF
Hot and Dry	Iraq India	>22°C/ <u><</u> 15 hPa	
		>22°C/>15-27	
Hot and humid	Iran Egypt	hPa	30°C/65%RI
		>22°C/>27 hPa	
Hot and very humid	Brazil Singapore		30°C/75%RI
	Subtropical and Mediterranean Hot and Dry Hot and humid Hot and very humid	Kingdom Northern Europe Russia Unit ed states Subtropical and Japan Mediterranean Southern Europe Hot and Dry Iraq India Hot and humid Iran Egypt Hot and very Brazil humid Singapore	Kingdom Northern Europe Russia Unit ed states Subtropical and Japan >15-22°C Mediterranean Southern Europe Hot and Dry Iran Egypt >22°C/>27 hPa Hot and very Brazil

Table No.4: ICH Climatic zones and Long terms stability conditions^{1, 3, 13, 14}

Table No.5: Test schedule for stability testing of new points¹⁶

Environment	Sampling Time Points (months)	Method & Climatic zone
25°C/60% RH	3, 6, 9, 12, 18, 24, 36	Long term for zones I and IV
30°C/35% RH	3, 6, 9, 12, 18, 24, 36	Long term for zones III
30°C/65% RH	3, 6, 9, 12, 18, 24, 36	Long term for zone IVa, or intermediate condition for zones I and II
30°C/75% RH	3, 6, 9, 12, 18, 24, 36	Long term for zone IVa, or intermediate condition for zones I and II
40°C/75% RH	3,6	Accelerated condition for all zones

Arunachalam A. et al. / Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry. 1(4), 2013, 184 - 195.

Table No.6: Stability test storage conditions for drug products			
Intended storage condition	Stability Test Method	ICH Test temperature and humidity (Period in months)	WHO Test temperature and humidity (Period in months)
Room	Long term	25±2°C/60±5% RH	25±2°C/60±5%
temperature	-	(12)	RH or
_			30±2°C/65±5%
			RH
			30±2°C/75±5%
			RH(12)
	Intermediate	30±2°C/65±5% RH(6)	30±2°C/65±5%
			RH (6)
	Accelerated	40±2°C/75±5% RH(6)	40±2°C/75±5%
			RH (6)
Refrigerated	Long term	5°C/ambient (12)	5±3°C
	Accelerated	25±2°C/60±5% RH(6)	25 ±2°C/60±5%
			RH or
			30 ±2°C/65±5%
			RH
Freezer	Long term	 -20°C/ambient (12) 	-20°C±5°C

Table No.6: Stability test storage conditions for drug products^{11, 13, 16}

Table No.7: Pattern of the concentration-time data and pooling decision

Slope	Intercept	Variation Factor	Pooling
Identic al	Identi cal	Nil	Yes
Identical	Different	Batch e.g. unequal initial drug concentrations	No
Different	Identi cal	Storage e.g. difference in the rate of drug loss	No
Different	Different	Interactive Forces-Both batch and storage factor	No

CONCLUSION

The review work was conclude that, Stability studies is utilized for formulated product to prediction of shelf life, expiray date, determine proper storage conditions and suggest labeling instructions.

ACKNOWLEDGEMENT

The authors would like to acknowledge Asmara College of Health Sciences, School of Pharmacy, Asmara, Eritrea, Africa for the preparation of the review work.

Available online: www.uptodateresearchpublication.com

BIBLIOGRAPHY

- 1. Singh S, Bakshi M. Guidance on conduct of stress test to determine inherent stability of drugs, *Pharm Technol Asia*, 2000, 24-36.
- 2. Kommanaboyina B, Rhodes CT. Trends in stability testing, with Emphasis on Stability during Distribution and Storage, *Drug Dev. Ind. Pharm*, 25, 1999, 857-867.
- 3. Singh S. Stability testing during product development in Jain NK Pharmaceutical product development, *CBS publisher and distributors, India,* 2000, 272-293.

Arunachalam A. et al. / Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry. 1(4), 2013, 184 - 195.

- 4. Carstensen JT. Drug Stability, Principles and Practices, *Marcel Dekker, New York*, 2000.
- 5. Matthews RB. Regulatory Aspects of Stability Testing in Europe, *Drug Dev. Ind. Pharm*, 25, 1999, 831-856.
- 6. Anderson G, Scott M. Determination of product shelf life and activation energy for five drugs of abuse, *Clin. Chem.* 37, 1991, 398-402.
- 7. Connors KA, Amidon GL, Kennon L. Chemical stability of pharmaceuticals-a handbook for pharmacists, *John Wiley and Sons, New York*, 1973, 8-119.
- 8. Lachman L, DeLuca P. Kinetic principles and stability testing. The theory and practice of industrial pharmacy, *Philadelphia. Lea and Febiger*, 2nd edition, 1976, 32-89.
- Bott RF, Oliveira WP. Storage conditions for stability testing of pharmaceuticals in hot and humid regions, *Drug Dev. and Indus. Pharm*, 33, 2007, 393-401.
- 10. Carstensen JT, Rhodes CT. Clin. Res. Drug Reg. Affairs, 10, 1993, 177-185.
- 11. WHO. Stability studies in a global environment. Geneva meeting working document QAS/05.146 with comments, 2004.
- 12. CPMP. Guideline on stability testing: Stability testing of existing active substances and related finished products, *CPMP/QWP/122/02*, 2003.
- 13. ICH Q1A (R2). Stability testing guidelines: Stability testing of new drug substances and products, *ICH Steering Committee*, 2003.
- 14. Grimm W. Extension of the international conference on harmonization tripartite guideline

for stability testing of new drug substances and products to countries of climatic zones 3 and 4, *Drug Dev. Ind. Pharm*, 24, 1998, 313-325.

- 15. Ali J, Khar RK, Ahuja A. Dosage form and design, *Birla Publications Pvt. Ltd, Delhi*, 3rd edition, 2008, 100-123.
- 16. Cha J, Gilmor T, Lane P, Ranweiler JS. Stability studies in Handbook of modern pharmaceutical analysis, *Separation Science and Technology*. *Elsevier*, 2001, 459-505.
- 17. Singh S. Drug Stability Testing and Shelf-life Determination According to International Guidelines, *Pharm. Technol*, 23, 1999, 68-88.
- Mischler PG. Developing Stability Protocols for Global Product Registrations-An Update. Presentation at International Seminar on Stability Testing: Design and Interpretation for International Registration, *IBC Life Sciences*, *London*, 13 and 14 February 2002.
- Bhutani H, Mariappan TT, Singh S. Behavior of Uptake of Moisture by Drugs and Excipients under Accelerated Conditions of Temperature and Humidity in the Absence and the Presence of light. Part 2. Packaged and Unpackaged anti-Tuberculosis drug products, *Pharm. Technol*, 27, 2003, 44-52.
- 20. Gaur A, Mariappan TT, Bhutani H, Singh S. A Possible Reason for the Generation of Out-of-Trend Stability Results: Variable Air Velocity at Different Locations within the Stability Chamber, *Pharm. Technol*, 29, 2005, 46-49.